Poultry genetic heritage cryopreservation and reconstruction: improvement and future challenges
  • Wang MS, Thakur M, Peng MS, Jiang Y, Frantz L, Li M, et al. 863 genomes reveal the origin and domestication of hen. Cell Res. 2020;30(8):693–701. https://doi.org/10.1038/s41422-020-0349-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • FAO, http://www.fao.org

  • Ritchie H, Roser M. Number of animals slaughtered for meat, World, 1961 to 2018. 2021. https://ourworldindata.org/meat-production#number-of-animals-slaughtered.

  • Muir WM, Wong GK, Zhang Y, Wang J, Groenen MA, Crooijmans RP, et al. Genome-wide analysis of worldwide hen SNP genetic vary signifies necessary absence of unusual alleles in enterprise breeds. Proc Natl Acad Sci U S A. 2008;105(45):17312–7. https://doi.org/10.1073/pnas.0806569105.

    Article  PubMed  PubMed Central  Google Scholar

  • FAO, Standing and developments of animal genetic resources-2018. http://www.fao.org/3/CA0121EN/ca0121en.pdf.

  • Fulton JE. Avian genetic stock preservation: An enterprise perspective. Poult Sci. 2006;85(2):227–31. https://doi.org/10.1093/ps/85.2.227.

    Article  CAS  PubMed  Google Scholar

  • Fulton JE, Delany ME. Poultry genetic resources-operation rescue needed. Science. 2003;300(5626):1667–8. https://doi.org/10.1126/science.1085407.

    Article  CAS  PubMed  Google Scholar

  • Wilkinson S, Wiener P, Teverson D, Haley CS, Hocking PM. Characterization of the genetic vary, building and admixture of British hen breeds. Anim Genet. 2012;43(5):552–63. https://doi.org/10.1111/j.1365-2052.2011.02296.x.

    Article  CAS  PubMed  Google Scholar

  • Cendron F, Perini F, Mastrangelo S, Tolone M, Criscione A, Bordonaro S, et al. Genome-wide SNP analysis reveals the inhabitants building and the conservation standing of 23 Italian hen breeds. Animals (Basel). 2020;10:1441. https://doi.org/10.3390/ani10081441.

    Article  Google Scholar

  • Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666. https://doi.org/10.1038/164666a0.

    Article  CAS  PubMed  Google Scholar

  • Prolonged JA. Avian semen cryopreservation: What are the natural challenges? Poult Sci. 2006;85(2):232–6. https://doi.org/10.1093/ps/85.2.232.

    Article  CAS  PubMed  Google Scholar

  • Blesbois E. Natural choices of the avian male gamete and their software program to biotechnology of conservation. J Poult Sci. 2012;49(3):141–9. https://doi.org/10.2141/jpsa.011120.

    Article  Google Scholar

  • Agca Y, Critser JK. Cryopreservation of spermatozoa in assisted copy. Semin Reprod Med. 2002;20(1):15–23. https://doi.org/10.1055/s-2002-23516.

    Article  PubMed  Google Scholar

  • Lake PE, Stewart JM. Preservation of fowl semen in liquid nitrogen-an improved methodology. Br Poult Sci. 1978;19(2):187–94. https://doi.org/10.1080/00071667808416462.

    Article  CAS  PubMed  Google Scholar

  • Sexton TJ. Optimum expenses for cooling hen semen from +5 to -196℃. Poult Sci. 1980;59(12):2765–70. https://doi.org/10.3382/ps.0592765.

    Article  CAS  PubMed  Google Scholar

  • Bailey JL, Bilodeau JF, Cormier N. Semen cryopreservation in dwelling animals: A harmful and capacitating phenomenon. J Androl. 2000;21(1):1–7. https://doi.org/10.1002/j.1939-4640.2000.tb03268.x.

    Article  CAS  PubMed  Google Scholar

  • Bojic S, Murray A, Bentley BL, Spindler R, Magalhes J. Winter is coming: The best way ahead for cryopreservation. BMC Biol. 2021;19(1):56. https://doi.org/10.1186/s12915-021-00976-8.

    Article  PubMed  PubMed Central  Google Scholar

  • Gao D, Critser JK. Mechanisms of cryoinjury in residing cells. ILAR J. 2000;41(4):187–96. https://doi.org/10.1093/ilar.41.4.187.

    Article  CAS  PubMed  Google Scholar

  • Liu J, Cheng KM, Silversides FG. Fundamental guidelines of cryobiology and software program to ex situ conservation of avian species. Avian Biol Res. 2013;6(3):187–97. https://doi.org/10.3184/175815513X13740778695007.

    Article  Google Scholar

  • Wilmut I. From germ cell preservation to regenerative medicine: An thrilling evaluation occupation in biotechnology. Annu Rev Anim Biosci. 2014;2:1–21. https://doi.org/10.1146/annurev-animal-022513-114214.

    Article  CAS  PubMed  Google Scholar

  • Miranda M, Kulikova B, Vasicek J, Olexikova L, Iaffaldano N, Chrenek P. Affect of cryoprotectants and thawing temperatures on hen sperm prime quality. Reprod Domest Anim. 2018;53(1):93–100. https://doi.org/10.1111/rda.13070.

    Article  CAS  PubMed  Google Scholar

  • Thelie A, Bailliard A, Seigneurin F, Zerjal T, Tixier-Boichard M, Blesbois E. Rooster semen cryopreservation and use for the restoration of unusual genetic property. Poult Sci. 2019;98(1):447–55. https://doi.org/10.3382/ps/pey360.

    Article  CAS  PubMed  Google Scholar

  • Chalah T, Seigneurin F, Blesbois E, Brillard JP. In vitro comparability of fowl sperm viability in ejaculates frozen by three completely totally different strategies and relationship with subsequent fertility in vivo. Cryobiology. 1999;39(2):185–91. https://doi.org/10.1006/cryo.1999.2201.

    Article  CAS  PubMed  Google Scholar

  • Tselutin Okay, Seigneurin F, Blesbois E. Comparability of cryoprotectants and techniques of cryopreservation of fowl spermatozoa. Poult Sci. 1999;78(4):586–90. https://doi.org/10.1093/ps/78.4.586.

    Article  CAS  PubMed  Google Scholar

  • Santiago-Moreno J, Castano C, Toledano-Diaz A, Coloma MA, Lopez-Sebastian A, Prieto MT, et al. Semen cryopreservation for the creation of a Spanish poultry breeds cryobank: Optimization of freezing cost and equilibration time. Poult Sci. 2011;90(9):2047–53. https://doi.org/10.3382/ps.2011-01355.

    Article  CAS  PubMed  Google Scholar

  • Thananurak P, Chuaychu-Noo N, Thelie A, Phasuk Y, Vongpralub T, Blesbois E. Sucrose will enhance the usual and fertilizing functionality of cryopreserved hen sperms in distinction to raffinose. Poult Sci. 2019;98(9):4161–71. https://doi.org/10.3382/ps/pez196.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Chauychu-Noo N, Thananurak P, Boonkum W, Vongpralub T, Chankitisakul V. Affect of pure selenium dietary supplementation on prime quality and fertility of cryopreserved hen sperm. Cryobiology. 2021;98:57–62. https://doi.org/10.1016/j.cryobiol.2020.12.008.

    Article  CAS  PubMed  Google Scholar

  • Murugesan S, Mahapatra R. Cryopreservation of Ghagus hen semen: Affect of cryoprotectants, diluents and thawing temperature. Reprod Domest Anim. 2020;55(8):951–7. https://doi.org/10.1111/rda.13734.

    Article  CAS  PubMed  Google Scholar

  • Prolonged JA, Kulkarni G. An environment friendly methodology for enhancing the fertility of glycerol-exposed poultry semen. Poult Sci. 2004;83(9):1594–601. https://doi.org/10.1093/ps/83.9.1594.

    Article  CAS  PubMed  Google Scholar

  • Zong Y, Photo voltaic Y, Li Y, Mehaisen GMK, Yuan J, Ma H, et al. Affect of glycerol focus, glycerol elimination methodology, and straw variety on the usual and fertility of frozen hen semen. Poult Sci. 2022;101(6):101840. https://doi.org/10.1016/j.psj.2022.101840.

  • Moce E, Grasseau I, Blesbois E. Cryoprotectant and freezing-process alter the facility of hen sperm to acrosome react. Anim Reprod Sci. 2010;122(3–4):359–66. https://doi.org/10.1016/j.anireprosci.2010.10.010.

    Article  CAS  PubMed  Google Scholar

  • Abouelezz FM, Castano C, Toledano-Diaz A, Esteso MC, Lopez-Sebastian A, Campo JL, et al. Sperm-egg penetration assay analysis of the contraceptive outcomes of glycerol and egg yolk in rooster sperm diluents. Theriogenology. 2015;83(9):1541–7. https://doi.org/10.1016/j.theriogenology.2015.02.002.

    Article  CAS  PubMed  Google Scholar

  • Neville WJ, Macpherson JW, Reinhart B. The contraceptive movement of glycerol in chickens. Poult Sci. 1971;50(5):1411–5. https://doi.org/10.3382/ps.0501411.

    Article  CAS  PubMed  Google Scholar

  • Purdy PH, Monitor Y, Silversides FG, Blackburn HD. Evaluation of glycerol elimination strategies, cryoprotectants, and insemination methods for cryopreserving rooster sperm with implications of regeneration of breed or line or every. Poult Sci. 2009;88(10):2184–91. https://doi.org/10.3382/ps.2008-00402.

    Article  CAS  PubMed  Google Scholar

  • Mehdipour M, Daghigh KH, Martinez-Pastor F. Poloxamer 188 exerts a cryoprotective influence on rooster sperm and permits reducing glycerol focus inside the freezing extender. Poult Sci. 2020;99(11):6212–20. https://doi.org/10.1016/j.psj.2020.08.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Hammerstedt RH, Graham JK. Cryopreservation of poultry sperm: The enigma of glycerol. Cryobiology. 1992;29(1):26. https://doi.org/10.1016/0011-2240(92)90004-L.

    Article  CAS  PubMed  Google Scholar

  • Woelders H, Zuidberg CA, Hiemstra SJ. Animal genetic property conservation inside the Netherlands and Europe: Poultry perspective. Poult Sci. 2006;85(2):216–22. https://doi.org/10.1093/ps/85.2.216.

    Article  CAS  PubMed  Google Scholar

  • Behnamifar A, Bernal B, Torres O, Luis-Chincoya H, GGil M, García-Casado P, et al. Evaluation Discover: Evaluation of two methods for together with cryoprotectant to semen and outcomes of bovine serum albumin on prime quality traits of cryopreserved rooster spermatozoa. Poult Sci. 2021;100(6):101093. https://doi.org/10.1016/j.psj.2021.101093.

  • Tang M, Cao J, Yu Z, Liu H, Yang F, Huang S, et al. New semen freezing methodology for hen and drake using dimethylacetamide as a result of the cryoprotectant. Poult Sci. 2021;100(8):101091. https://doi.org/10.1016/j.psj.2021.101091.

  • Rakha BA, Ansari MS, Akhter S, Zafar Z, Hussain I, Santiago-Moreno J, et al. Cryopreservation of Indian purple jungle fowl (Gallus gallus murghi) semen with polyvinylpyrrolidone. Cryobiology. 2017;78:27–33. https://doi.org/10.1016/j.cryobiol.2017.07.006.

    Article  CAS  PubMed  Google Scholar

  • Rakha BA, Ansari MS, Akhter S, Santiago-Moreno J, Blesbois E. Cryoprotectant outcomes of egg yolk on Indian purple jungle fowl (Gallus gallus murghi) sperm. Theriogenology. 2018;119:150–5. https://doi.org/10.1016/j.theriogenology.2018.06.015.

    Article  CAS  PubMed  Google Scholar

  • Mehdipour M, Daghigh KH, Moghaddam G, Hamishehkar H. Affect of egg yolk plasma and soybean lecithin on rooster frozen-thawed sperm prime quality and fertility. Theriogenology. 2018;116:89–94. https://doi.org/10.1016/j.theriogenology.2018.05.013.

    Article  CAS  PubMed  Google Scholar

  • Photo voltaic L, He M, Wu C, Zhang S, Dai J, Zhang D. Helpful have an effect on of soybean lecithin nanoparticles on rooster frozen–thawed semen prime quality and fertility. Animals (Basel). 2021;11:1169.

  • Chatterjee S, Gagnon C. Manufacturing of reactive oxygen species by spermatozoa current course of cooling, freezing, and thawing. Mol Reprod Dev. 2001;59(4):451–8. https://doi.org/10.1002/mrd.1052.

    Article  CAS  PubMed  Google Scholar

  • Partyka A, Lukaszewicz E, Nizanski W. Affect of cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes train in fowl semen. Theriogenology. 2012;77(8):1497–504. https://doi.org/10.1016/j.theriogenology.2011.11.006.

    Article  CAS  PubMed  Google Scholar

  • Surai PF, Cerolini S, Wishart GJ, Speake BK, Sparks NHC. Lipid and antioxidant composition of hen semen and its susceptibility to peroxidation. Avian Poult Biol Rev. 1998;9(1):11–23. https://doi.org/10.1016/S0301-6226(97)00127-9.

    Article  Google Scholar

  • Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species inside the know-how of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93(8):3199–207. https://doi.org/10.1210/jc.2007-2616.

    Article  CAS  PubMed  Google Scholar

  • Castro LS, Hamilton TR, Mendes CM, Nichi M, Barnabe VH, Visintin JA, et al. Sperm cryodamage occurs after quick freezing part: Motion cytometry technique and antioxidant enzymes train at completely totally different ranges of cryopreservation. J Anim Sci Biotechnol. 2016;7:17. https://doi.org/10.1186/s40104-016-0076-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Surai PF, Fujihara N, Speake BK, Brillard J, Wishart GJ, Sparks NHC. Polyunsaturated fatty acids, lipid peroxidation and antioxidant security in avian semen – Analysis -. Asian-Australas J Anim Sci. 2001;14(7):1024–50. https://doi.org/10.5713/ajas.2001.1024.

    Article  CAS  Google Scholar

  • Partyka A, Nizanski W. Supplementation of avian semen extenders with antioxidants to boost semen Top quality-Is it an environment friendly method? Antioxidants (Basel). 2021;10(12):1927. https://doi.org/10.3390/antiox10121927.

    Article  CAS  Google Scholar

  • Siari S, Mehri M, Sharafi M. Supplementation of Beltsville extender with quercetin improves the usual of frozen-thawed rooster semen. Br Poult Sci. 2022;63(2):252–60. https://doi.org/10.1080/00071668.2021.1955331.

    Article  CAS  PubMed  Google Scholar

  • Masoudi R, Asadzadeh N, Sharafi M. Outcomes of freezing extender supplementation with mitochondria-targeted antioxidant Mito-TEMPO on frozen-thawed rooster semen prime quality and reproductive effectivity. Anim Reprod Sci. 2021;225:106671. https://doi.org/10.1016/j.anireprosci.2020.106671.

  • Thananurak P, Chuaychu-Noo N, Thelie A, Phasuk Y, Vongpralub T, Blesbois E. Completely totally different concentrations of cysteamine, ergothioneine, and serine modulate prime quality and fertilizing functionality of cryopreserved hen sperm. Poult Sci. 2020;99(2):1185–98. https://doi.org/10.1016/j.psj.2019.10.040.

    Article  CAS  PubMed  Google Scholar

  • Amini MR, Kohram H, Zare-Shahaneh A, Zhandi M, Sharideh H, Nabi MM. The implications of varied ranges of catalase and superoxide dismutase in modified Beltsville extender on rooster post-thawed sperm prime quality. Cryobiology. 2015;70(3):226–32. https://doi.org/10.1016/j.cryobiol.2015.03.001.

    Article  CAS  PubMed  Google Scholar

  • Masoudi R, Sharafi M, Zare SA, Kohram H, Nejati-Amiri E, Karimi H, et al. Supplementation of extender with coenzyme Q10 improves the function and fertility potential of rooster spermatozoa after cryopreservation. Anim Reprod Sci. 2018;198:193–201. https://doi.org/10.1016/j.anireprosci.2018.09.019.

    Article  CAS  PubMed  Google Scholar

  • Mehaisen G, Partyka A, Ligocka Z, Nizanski W. Cryoprotective influence of melatonin supplementation on post-thawed rooster sperm prime quality. Anim Reprod Sci. 2020;212:106238. https://doi.org/10.1016/j.anireprosci.2019.106238.

  • Appiah MO, He B, Lu W, Wang J. Antioxidative influence of melatonin on cryopreserved hen semen. Cryobiology. 2019;89:90–5. https://doi.org/10.1016/j.cryobiol.2019.05.001.

    Article  CAS  PubMed  Google Scholar

  • Fattah A, Sharafi M, Masoudi R, Shahverdi A, Esmaeili V, Najafi A. L-Carnitine in rooster semen cryopreservation: Motion cytometric, biochemical and motion findings for frozen-thawed sperm. Cryobiology. 2017;74:148–53. https://doi.org/10.1016/j.cryobiol.2016.10.009.

    Article  CAS  PubMed  Google Scholar

  • Lotfi S, Mehri M, Sharafi M, Masoudi R. Hyaluronic acid improves frozen-thawed sperm prime quality and fertility potential in rooster. Anim Reprod Sci. 2017;184:204–10. https://doi.org/10.1016/j.anireprosci.2017.07.018.

    Article  CAS  PubMed  Google Scholar

  • Moghbeli M, Kohram H, Zare-Shahaneh A, Zhandi M, Sharafi M, Nabi MM, et al. Are the optimum ranges of the catalase and vitamin E in rooster semen extender after freezing-thawing influenced by sperm focus? Cryobiology. 2016;72(3):264–8. https://doi.org/10.1016/j.cryobiol.2016.03.008.

    Article  CAS  PubMed  Google Scholar

  • Najafi D, Taheri RA, Najafi A, Rouhollahi AA, Alvarez-Rodriguez M. Affect of Achillea millefolium-loaded nanophytosome inside the post-thawing sperm prime quality and oxidative standing of rooster semen. Cryobiology. 2018;82:37–42. https://doi.org/10.1016/j.cryobiol.2018.04.011.

    Article  CAS  PubMed  Google Scholar

  • Partyka A, Nizanski W, Bajzert J, Lukaszewicz E, Ochota M. The influence of cysteine and superoxide dismutase on the usual of post-thawed hen sperm. Cryobiology. 2013;67(2):132–6. https://doi.org/10.1016/j.cryobiol.2013.06.002.

    Article  CAS  PubMed  Google Scholar

  • Chuaychu-Noo N, Thananurak P, Chankitisakul V, Vongpralub T. Supplementing rooster sperm with Ldl cholesterol-Loaded-Cyclodextrin improves fertility after cryopreservation. Cryobiology. 2017;74:8–12. https://doi.org/10.1016/j.cryobiol.2016.12.012.

    Article  CAS  PubMed  Google Scholar

  • Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Sarsaifi Okay, et al. Alpha-Linolenic acid supplementation in BioXcell(R) extender can improve the usual of post-cooling and frozen-thawed bovine sperm. Anim Reprod Sci. 2015;153:1–7. https://doi.org/10.1016/j.anireprosci.2014.12.001.

    Article  CAS  PubMed  Google Scholar

  • Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN. Small molecule ice recrystallization inhibitors mitigate purple blood cell lysis all through freezing, transient warming and thawing. Sci Rep. 2016;6:23619. https://doi.org/10.1038/srep23619.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Wang Z, Yang B, Chen Z, Liu D, Jing L, Gao C, et al. Bioinspired cryoprotectants of Glucose-Based carbon dots. ACS Appl Bio Mater. 2020;3(6):3785–91. https://doi.org/10.1021/acsabm.0c00376.

    Article  CAS  PubMed  Google Scholar

  • Bai G, Monitor Z, Geng H, Gao D, Liu Okay, Wu S, et al. Oxidized Quasi-Carbon nitride quantum dots inhibit ice improvement. Adv Mater. 2017;29:28. https://doi.org/10.1002/adma.201606843.

    Article  CAS  Google Scholar

  • Robles V, Valcarce DG, Riesco MF. The utilization of antifreeze proteins inside the cryopreservation of gametes and embryos. Biomolecules. 2019;9:5. https://doi.org/10.3390/biom9050181.

    Article  CAS  Google Scholar

  • Mehdipour M, Daghigh-Kia H, Najafi A, Martinez-Pastor F. Type III antifreeze protein (AFP) improves the post-thaw prime quality and in vivo fertility of rooster spermatozoa. Poult Sci. 2021;100(8):101291. https://doi.org/10.1016/j.psj.2021.101291.

  • Cheng CY, Chen PR, Chen CJ, Wang SH, Chen CF, Lee YP, et al. Differential protein expression in hen spermatozoa sooner than and after freezing-thawing remedy. Anim Reprod Sci. 2015;152:99–107. https://doi.org/10.1016/j.anireprosci.2014.11.011.

    Article  CAS  PubMed  Google Scholar

  • Qi XL, Xing Okay, Huang Z, Chen Y, Wang L, Zhang LC, et al. Comparative transcriptome analysis digs out genes related to antifreeze between current and frozen-thawed rooster sperm. Poult Sci. 2020;99(6):2841–51. https://doi.org/10.1016/j.psj.2020.01.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Prolonged JA, Bongalhardo DC, Pelaez J, Saxena S, Settar P, O’Sullivan NP, et al. Rooster semen cryopreservation: Affect of pedigree line and male age on postthaw sperm function. Poult Sci. 2010;89(5):966–73. https://doi.org/10.3382/ps.2009-00227.

    Article  CAS  PubMed  Google Scholar

  • Santiago-Moreno J, Bernal B, Perez-Cerezales S, Castano C, Toledano-Diaz A, Esteso MC, et al. Seminal plasma amino acid profile in quite a few breeds of hen: Operate of seminal plasma on sperm cryoresistance. PLoS ONE. 2019;14(1):e209910. https://doi.org/10.1371/journal.pone.0209910.

  • El-Sheshtawy RI. Affect of Tris-extender supplemented with a mixture of turmeric and ethylene glycol on buffalo bull semen freezability and in vivo fertility. Trop Anim Properly being Prod. 2021;53(2):238. https://doi.org/10.1007/s11250-021-02668-5.

    Article  PubMed  Google Scholar

  • Yeste M, Estrada E, Casas I, Bonet S, Rodriguez-Gil JE. Good and unhealthy freezability boar ejaculates differ inside the integrity of nucleoprotein building after freeze-thawing nonetheless not in ROS ranges. Theriogenology. 2013;79(6):929–39. https://doi.org/10.1016/j.theriogenology.2013.01.008.

    Article  CAS  PubMed  Google Scholar

  • Sztein JM, Takeo T, Nakagata N. Historic previous of cryobiology, with specific emphasis in evolution of mouse sperm cryopreservation. Cryobiology. 2018;82:57–63. https://doi.org/10.1016/j.cryobiol.2018.04.008.

    Article  CAS  PubMed  Google Scholar

  • Mitchell RL, Buckland RB, Kennedy BW. Heritability of fertility of frozen and up to date hen semen and the connection between the fertility of frozen and up to date semen. Poult Sci. 1977;56(4):1168–77. https://doi.org/10.3382/ps.0561168.

    Article  Google Scholar

  • Bernal B, Iglesias-Cabeza N, Sanchez-Rivera U, Toledano-Diaz A, Castano C, Perez-Cerezales S, et al. Affect of supplementation of valine to hen extender on sperm cryoresistance and post-thaw fertilization functionality. Poult Sci. 2020;99(12):7133–41. https://doi.org/10.1016/j.psj.2020.09.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Ribeiro JC, Carrageta DF, Bernardino RL, Alves MG, Oliveira PF. Aquaporins and animal gamete cryopreservation: Advances and future challenges. Animals (Basel). 2022;12(3):359. https://doi.org/10.3390/ani12030359.

    Article  Google Scholar

  • Khan IM, Cao Z, Liu H, Khan A, Rahman SU, Khan MZ, et al. Affect of cryopreservation on spermatozoa freeze-thawed traits and relevance OMICS to guage sperm Cryo-Tolerance in cattle. Entrance Vet Sci. 2021;8: 609180. https://doi.org/10.3389/fvets.2021.609180.

    Article  PubMed  PubMed Central  Google Scholar

  • Seigneurin F, Grasseau I, Chapuis H, Blesbois E. An surroundings pleasant methodology of guinea fowl sperm cryopreservation. Poult Sci. 2013;92(11):2988–96. https://doi.org/10.3382/ps.2013-03166.

    Article  CAS  PubMed  Google Scholar

  • Iaffaldano N, Romagnoli L, Manchisi A, Rosato MP. Cryopreservation of turkey semen by the pellet methodology: Outcomes of variables such as a result of the extender, cryoprotectant focus, cooling time and warming temperature on sperm prime quality determined by the use of principal components analysis. Theriogenology. 2011;76(5):794–801. https://doi.org/10.1016/j.theriogenology.2011.04.012.

    Article  CAS  PubMed  Google Scholar

  • Blackburn HD, Silversides F, Purdy PH. Inseminating current or cryopreserved semen for optimum effectivity: Implications for gene banks and enterprise 1. Poult Sci. 2009;88(10):2192–8. https://doi.org/10.3382/ps.2008-00403.

    Article  CAS  PubMed  Google Scholar

  • Blesbois E, Seigneurin F, Grasseau I, Limouzin C, Besnard J, Gourichon D, et al. Semen cryopreservation for ex situ administration of genetic vary in hen: Creation of the French avian cryobank. Poult Sci. 2007;86(3):555–64. https://doi.org/10.1093/ps/86.3.555.

    Article  CAS  PubMed  Google Scholar

  • Blackburn HD. The Nationwide Animal Germplasm Program: Challenges and alternate options for poultry genetic property. Poult Sci. 2006;85(2):210–5. https://doi.org/10.1093/ps/85.2.210.

    Article  CAS  PubMed  Google Scholar

  • Silversides FG, Purdy PH, Blackburn HD. Comparative costs of programmes to protect hen genetic variation based totally on sustaining residing populations or storing cryopreserved supplies. Br Poult Sci. 2012;53(5):599–607. https://doi.org/10.1080/00071668.2012.727383.

    Article  CAS  PubMed  Google Scholar

  • Nakamura Y, Kagami H, Tagami T. Progress, differentiation and manipulation of hen germ cells. Dev Improvement Differ. 2013;55(1):20–40. https://doi.org/10.1111/dgd.12026.

    Article  PubMed  Google Scholar

  • Paiva SR, Mcmanus CM, Blackburn H. Conservation of animal genetic property – a model new tact. Livest Sci. 2016;193:32–8. https://doi.org/10.1016/j.livsci.2016.09.010.

    Article  Google Scholar

  • Tajima A. Manufacturing of germ-line chimeras and their software program in dwelling hen. Avian Poult Biol Rev. 2002;13(1):15–30. https://doi.org/10.3184/147020602783698467.

    Article  Google Scholar

  • Petitte JN, Clark ME, Liu G, Gibbins A, Etches RJ. Manufacturing of somatic and germline chimeras inside the hen by change of early blastodermal cells. Progress. 1990;108(1):185–9.

    Article  CAS  Google Scholar

  • Tajima A, Naito M, Yasuda Y, Kuwana T. Manufacturing of germ line chimera by change of primordial germ cells inside the dwelling hen (Gallus domesticus). Theriogenology. 1993;40(3):509–19. https://doi.org/10.1016/0093-691x(93)90404-s.

    Article  CAS  PubMed  Google Scholar

  • Tonus C, Connan D, Waroux O, Vandenhove B, Wayet J, Gillet L, et al. Cryopreservation of hen primordial germ cells by vitrification and gradual freezing: A comparative analysis. Theriogenology. 2017;88:197–206. https://doi.org/10.1016/j.theriogenology.2016.09.022.

    Article  CAS  PubMed  Google Scholar

  • Tajima A, Hayashi H, Kamizumi A, Ogura J, Kuwana T, Chikamune T. Analysis on the main focus of circulating primordial germ cells (cPGCs) in early chick embryos. J Exp Zool. 1999;284(7):759–64. https://doi.org/10.1002/(SICI)1097-010X(19991201)284:73.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar

  • Mozdziak PE, Angerman-Stewart J, Rushton B, Pardue SL, Petitte JN. Isolation of hen primordial germ cells using fluorescence-activated cell sorting. Poult Sci. 2005;84(4):594–600. https://doi.org/10.1093/ps/84.4.594.

    Article  CAS  PubMed  Google Scholar

  • Han JY, Park TS, Hong YH, Jeong DK, Kim JN, Kim KD, et al. Manufacturing of germline chimeras by change of hen gonadal primordial germ cells maintained in vitro for an extended interval. Theriogenology. 2002;58(8):1531–9. https://doi.org/10.1016/s0093-691x(02)01061-0.

    Article  CAS  PubMed  Google Scholar

  • Tajima A, Naito M, Yasuda Y, Kuwana T. Manufacturing of germ-line chimeras by change of cryopreserved gonadal primordial germ cells (gPGCs) in hen. J Exp Zool. 1998;280(3):265–7. https://doi.org/10.1002/(SICI)1097-010X(19980215)280:33.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar

  • Yuki N, Takeo M, Mitsuru N, Atsushi T. A model new methodology for isolating viable gonadal germ cells from 7-day-old chick embryos. J Poult Sci. 2015;48(2):106–11. https://doi.org/10.2141/jpsa.010094.

    Article  Google Scholar

  • Chaipipat S, Prukudom S, Sritabtim Okay, Kuwana T, Piyasanti Y, Sinsiri R, et al. Primordial germ cells isolated from specific particular person embryos of purple junglefowl and indigenous pheasants of Thailand. Theriogenology. 2021;165:59–68. https://doi.org/10.1016/j.theriogenology.2021.02.010.

    Article  CAS  PubMed  Google Scholar

  • Hu T, Taylor L, Sherman A, Keambou TC, Kemp SJ, Whitelaw B, et al. A low-tech, cost-effective and surroundings pleasant methodology for safeguarding genetic vary by direct cryopreservation of poultry embryonic reproductive cells. Elife. 2022;11:e74036. https://doi.org/10.7554/eLife.74036.

  • Tsunekawa N, Naito M, Sakai Y, Nishida T, Noce T. Isolation of hen vasa homolog gene and tracing the origin of primordial germ cells. Progress. 2000;127(12):2741–50. https://doi.org/10.1007/s004290050338.

    Article  CAS  PubMed  Google Scholar

  • Szczerba A, Kuwana T, Bednarczyk M. Focus and full number of circulating primordial germ cells in Inexperienced-legged Partridgelike hen embryos. Poult Sci. 2021;100(1):319–24. https://doi.org/10.1016/j.psj.2020.08.016.

    Article  CAS  PubMed  Google Scholar

  • Macdonald J, Glover JD, Taylor L, Sang HM, McGrew MJ. Characterisation and germline transmission of cultured avian primordial germ cells. PLoS ONE. 2010;5(11):e15518. https://doi.org/10.1371/journal.pone.0015518.

  • Woodcock ME, Gheyas AA, Mason AS, Nandi S, Taylor L, Sherman A, et al. Reviving unusual hen breeds using genetically engineered sterility in surrogate host birds. Proc Natl Acad Sci U S A. 2019;116(42):20930–7. https://doi.org/10.1073/pnas.1906316116.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Nandi S, Whyte J, Taylor L, Sherman A, Nair V, Kaiser P, et al. Cryopreservation of specialized hen traces using cultured primordial germ cells. Poult Sci. 2016;95(8):1905–11. https://doi.org/10.3382/ps/pew133.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Lin M, Thorne MH, Martin IC, Sheldon BL, Jones RC. Progress of the gonads inside the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparability with common diploid males (ZZ) and females (ZW). Reprod Fertil Dev. 1995;7(5):1185–97. https://doi.org/10.1071/rd9951185.

    Article  CAS  PubMed  Google Scholar

  • Naito M, Tajima A, Yasuda Y, Kuwana T. Manufacturing of germline chimeric chickens, with extreme transmission cost of donor-derived gametes, produced by change of primordial germ cells. Mol Reprod Dev. 1994;39(2):153–61. https://doi.org/10.1002/mrd.1080390206.

    Article  CAS  PubMed  Google Scholar

  • Nakamura Y, Usui F, Ono T, Takeda Okay, Nirasawa Okay, Kagami H, et al. Germline substitute by change of primordial germ cells into partially sterilized embryos inside the hen. Biol Reprod. 2010;83(1):130–7. https://doi.org/10.1095/biolreprod.110.083923.

    Article  CAS  PubMed  Google Scholar

  • Nakamura Y, Usui F, Miyahara D, Mori T, Ono T, Kagami H, et al. X-irradiation removes endogenous primordial germ cells (PGCs) and can enhance germline transmission of donor PGCs in chimeric chickens. J Reprod Dev. 2012;58(4):432–7. https://doi.org/10.1262/jrd.2012-045.

    Article  PubMed  Google Scholar

  • Molnar M, Lazar B, Sztan N, Vegi B, Drobnyak A, Toth R, et al. Investigation of the Guinea fowl and residential fowl hybrids as potential surrogate hosts for avian cryopreservation programmes. Sci Rep. 2019;9(1):14284. https://doi.org/10.1038/s41598-019-50763-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Ballantyne M, Woodcock M, Doddamani D, Hu T, Taylor L, Hawken RJ, et al. Direct allele introgression into pure hen breeds using Sire Dam Surrogate (SDS) mating. Nat Commun. 2021;12(1):659. https://doi.org/10.1038/s41467-020-20812-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Nakamura Y. Poultry genetic helpful useful resource conservation using primordial germ cells. J Reprod Dev. 2016;62(5):431–7. https://doi.org/10.1262/jrd.2016-052.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • Yu F, Zhu Z, Chen X, Huang J, Jia R, Pan J. Isolation, characterization and germline chimera preparation of primordial germ cells from the Chinese language language Meiling hen. Poult Sci. 2019;98(2):566–72. https://doi.org/10.3382/ps/pey410.

    Article  CAS  PubMed  Google Scholar

  • Lazar B, Molnar M, Sztan N, Vegi B, Drobnyak A, Toth R, et al. Worthwhile cryopreservation and regeneration of a partridge colored Hungarian native hen breed using primordial germ cells. Poult Sci. 2021;100(8):101207. https://doi.org/10.1016/j.psj.2021.101207.

  • Ballantyne M, Taylor L, Hu T, Meunier D, Nandi S, Sherman A, et al. Avian primordial germ cells are bipotent for male or female gametogenesis. Entrance Cell Dev Biol. 2021;9:726827. https://doi.org/10.3389/fcell.2021.726827.

  • Tagami T, Kagami H, Matsubara Y, Harumi T, Naito M, Takeda Okay, et al. Differentiation of female primordial germ cells inside the male testes of hen (Gallus gallus domesticus). Mol Reprod Dev. 2007;74(1):68–75. https://doi.org/10.1002/mrd.20499.

    Article  CAS  PubMed  Google Scholar

  • Sekita Y, Nakamura T, Kimura T. Reprogramming of germ cells into pluripotency. World J Stem Cells. 2016;8(8):251–9. https://doi.org/10.4252/wjsc.v8.i8.251.

    Article  PubMed  PubMed Central  Google Scholar

  • Amini MJ, Sabzalipoor H, Kehtari M, Enderami SE, Soleimani M, Nikzad H. Derivation of male germ cells from induced pluripotent stem cells by inducers: A consider. Cytotherapy. 2018;20(3):279–90. https://doi.org/10.1016/j.jcyt.2018.01.002.

    Article  CAS  Google Scholar

  • Ryder OA, Onuma M. Viable cell custom banking for biodiversity characterization and conservation. Annu Rev Anim Biosci. 2018;6:83–98. https://doi.org/10.1146/annurev-animal-030117-014556.

    Article  PubMed  Google Scholar

  • Oikawa M, Kobayashi H, Sanbo M, Mizuno N, Iwatsuki Okay, Takashima T, et al. Sensible primordial germ cell-like cells from pluripotent stem cells in rats. Science. 2022;376(6589):176–9.

    Article  CAS  Google Scholar

  • Guan J, Wang G, Wang J, Zhang Z, Fu Y, Cheng L, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature. 2022;605:325–31. https://doi.org/10.1038/s41586-022-04593-5.

    Article  CAS  PubMed  Google Scholar

  • Zhao R, Zuo Q, Yuan X, Jin Okay, Jin J, Ding Y, et al. Manufacturing of viable hen by allogeneic transplantation of primordial germ cells induced from somatic cells. Nat Commun. 2021;12(1):2989. https://doi.org/10.1038/s41467-021-23242-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar

  • FAO. Cryoconservation of animal genetic property. FAO Animal Manufacturing and Properly being Pointers No. 12. Rome; 2012.

  • Santiago-Moreno J, Blesbois E. Animal board invited consider: Germplasm utilized sciences for use with poultry. Animal. 2022;16(3):100475. https://doi.org/10.1016/j.animal.2022.100475.

  • Monitor Y, Silversides F. Heterotopic transplantation of testes in newly hatched chickens and subsequent manufacturing of offspring by way of intramagnal insemination. Biol Reprod. 2007;76(4):598–603. https://doi.org/10.1095/biolreprod.106.058032.

    Article  CAS  PubMed  Google Scholar

  • Monitor Y, Silversides FG. Manufacturing of offspring from cryopreserved hen testicular tissue. Poult Sci. 2007;86(7):1390–6. https://doi.org/10.1093/ps/86.7.1390.

    Article  CAS  PubMed  Google Scholar

  • Silversides FG, Robertson MC, Liu J. Improvement of subcutaneous hen testicular transplants. Poult Sci. 2013;92(7):1916–20. https://doi.org/10.3382/ps.2013-03057.

    Article  CAS  PubMed  Google Scholar

  • Liu J, Cheng KM, Silversides FG. Manufacturing of keep offspring from testicular tissue cryopreserved by vitrification procedures in Japanese quail (Coturnix japonica). Biol Reprod. 2013;88(5):124. https://doi.org/10.1095/biolreprod.113.108951.

    Article  PubMed  Google Scholar

  • Benesova B, Mucksova J, Kalina J, Trefil P. Restoration of spermatogenesis in infertile male chickens after transplantation of cryopreserved testicular cells. Br Poult Sci. 2014;55(6):837–45. https://doi.org/10.1080/00071668.2014.974506.

    Article  CAS  PubMed  Google Scholar

  • Monitor Y, Silversides FG. The technique of orthotopic ovarian transplantation inside the hen. Poult Sci. 2006;85(6):1104–6. https://doi.org/10.1093/ps/85.6.1104.

    Article  CAS  PubMed  Google Scholar

  • Kosenko OV. Orthotopic transplantation of donor ovary instead methodology of artificial copy of fowl. Russ Agricult Sci. 2007;33(3):189–92. https://doi.org/10.3103/S1068367407030160.

    Article  Google Scholar

  • Silversides FG, Monitor Y, Renema R, Rathgeber BR, Classen HL. Cryopreservation of germplasm from chickens saved in Canadian evaluation institutions. Can J Anim Sci. 2008;88(4):577–80. https://doi.org/10.4141/CJAS08030.

    Article  Google Scholar

  • Silversides FG, Robertson MC, Liu J. Cryoconservation of avian gonads in Canada. Poult Sci. 2013;92(10):2613–7. https://doi.org/10.3382/ps.2013-03185.

    Article  CAS  PubMed  Google Scholar

  • Liu J, Elsasser TH, Prolonged JA. Microscopic morphology and apoptosis of ovarian tissue after cryopreservation using a vitrification methodology in post-hatching turkey poults. Meleagris gallopavo J Poult Sci. 2017;54(4):303–11. https://doi.org/10.2141/jpsa.0170033.

    Article  PubMed  Google Scholar

  • Liu J, Cheng KM, Silversides FG. Novel needle-in-straw vitrification can efficiently defend the follicle morphology, viability, and vascularization of ovarian tissue in Japanese quail (Coturnix japonica). Anim Reprod Sci. 2012;134(3–4):197–202. https://doi.org/10.1016/j.anireprosci.2012.08.002.

    Article  PubMed  Google Scholar

  • Liu J, Monitor Y, Cheng KM, Silversides FG. Manufacturing of donor-derived offspring from cryopreserved ovarian tissue in Japanese quail (Coturnix japonica). Biol Reprod. 2010;83(1):15–9. https://doi.org/10.1095/biolreprod.110.083733.

    Article  CAS  PubMed  Google Scholar

  • Monitor Y, Cheng KM, Robertson MC, Silversides FG. Manufacturing of donor-derived offspring after ovarian transplantation between Muscovy (Cairina moschata) and Pekin (Anas platyrhynchos) geese. Poult Sci. 2012;91(1):197–200. https://doi.org/10.3382/ps.2011-01672.

    Article  CAS  PubMed  Google Scholar

  • Liptoi Okay, Buda Okay, Rohn E, Drobnyak A, Meleg EE, Palinkas-Bodzsar N, et al. Enchancment of the making use of of gonadal tissue allotransplantation inside the in vitro conservation of hen genetic traces. Anim Reprod Sci. 2020;213:106280. https://doi.org/10.1016/j.anireprosci.2020.106280.

  • Monitor Y, Silversides FG. Offspring produced from orthotopic transplantation of hen ovaries. Poult Sci. 2007;86(1):107–11. https://doi.org/10.1093/ps/86.1.107.

    Article  CAS  PubMed  Google Scholar

  • Liptoi Okay, Horvath G, Gal J, Varadi E, Barna J. Preliminary outcomes of the making use of of gonadal tissue change in diversified hen breeds inside the poultry gene conservation. Anim Reprod Sci. 2013;141(1–2):86–9. https://doi.org/10.1016/j.anireprosci.2013.06.016.

    Article  PubMed  Google Scholar

  • Monitor Y, Silversides FG. Prolonged-term manufacturing of donor-derived offspring from hen ovarian transplants. Poult Sci. 2008;87(9):1818–22. https://doi.org/10.3382/ps.2008-00103.

    Article  CAS  PubMed  Google Scholar

  • Fogarty NM, Maxwell WM, Eppleston J, Evans G. The viability of transferred sheep embryos after long-term cryopreservation. Reprod Fertil Dev. 2000;12(1–2):31–7. https://doi.org/10.1071/rd00020.

    Article  CAS  PubMed  Google Scholar

  • Carwell DB, Pitchford JA, Gentry GT Jr, Blackburn H, Bondioli KR, Godke RA. Beef cattle being pregnant expenses following insemination with aged frozen Angus semen. Reprod Fert Develop. 2009;22(1):167–8. https://doi.org/10.1071/RDv22n1Ab19.

    Article  Google Scholar

  • Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, et al. Sperm cryopreservation: A consider on current molecular cryobiology and superior approaches. Reprod Biomed On-line. 2018;37(3):327–39. https://doi.org/10.1016/j.rbmo.2018.05.012.

    Article  CAS  PubMed  Google Scholar

  • Perez-Cerezales S, Gutierrez-Adan A, Martinez-Paramo S, Beirao J, Herraez MP. Altered gene transcription and telomere measurement in trout embryo and larvae obtained with DNA cryodamaged sperm. Theriogenology. 2011;76(7):1234–45. https://doi.org/10.1016/j.theriogenology.2011.05.028.

    Article  CAS  PubMed  Google Scholar

  • Eastick J, Venetis C, Cooke S, Storr A, Susetio D, Chapman M. Is early embryo enchancment as seen by time-lapse microscopy relying on whether or not or not current or frozen sperm was used for ICSI? A cohort analysis. J Assist Reprod Genet. 2017;34(6):733–40. https://doi.org/10.1007/s10815-017-0928-0.

    Article  PubMed  PubMed Central  Google Scholar

  • Salehi M, Mahdavi AH, Sharafi M, Shahverdi A. Cryopreservation of rooster semen: Proof for the epigenetic modifications of thawed sperm. Theriogenology. 2020;142:15–25. https://doi.org/10.1016/j.theriogenology.2019.09.030.

    Article  CAS  PubMed  Google Scholar

  • Kopeika J, Thornhill A, Khalaf Y. The influence of cryopreservation on the genome of gametes and embryos: Concepts of cryobiology and demanding appraisal of the proof. Hum Reprod Substitute. 2015;21(2):209–27. https://doi.org/10.1093/humupd/dmu063.

    Article  CAS  PubMed  Google Scholar

  • Blackburn HD. Biobanking genetic supplies for agricultural animal species. Annu Rev Anim Biosci. 2018;6:69–82. https://doi.org/10.1146/annurev-animal-030117-014603.

    Article  CAS  PubMed  Google Scholar

  • Blackburn HD. Progress of nationwide animal genetic helpful useful resource packages. Reprod Fertil Dev. 2004;16(1–2):27–32.

    Article  CAS  Google Scholar

  • Shepherd RK, Woolliams JA. Minimising inbreeding in small populations by rotational mating with frozen semen. Genet Res. 2004;84(2):87–93. https://doi.org/10.1017/s0016672304007062.

    Article  PubMed  Google Scholar

  • Sonesson AK, Goddard ME, Meuwissen TH. The utilization of frozen semen to attenuate inbreeding in small populations. Genet Res. 2002;80(1):27–30. https://doi.org/10.1017/s0016672302005712.

    Article  PubMed  Google Scholar

  • Grégoire L, Coralie D, Etienne V. Affect of utilizing cryobank samples in a particular cattle breed: A simulation analysis. Gene Sel Evol. 2011;43:36. https://doi.org/10.1186/1297-9686-43-36.

    Article  Google Scholar

  • Holt WV, Comizzoli P. Alternate options and limitations for reproductive science in species conservation. Annu Rev Anim Biosci. 2021;11:55

  • Leroy G, Boettcher P, Besbes B, Danchin-Burge C, Hiemstra SJ. Cryoconservation of animal genetic property in Europe and two African worldwide places: A distinct segment analysis. Vary. 2019;11(12):240. https://doi.org/10.3390/d11120240.

  • By

    Leave a Reply

    Your email address will not be published. Required fields are marked *